Improved Particle Swarm Optimizers with Application on Constrained Portfolio Selection

نویسندگان

  • Li Li
  • Bing Xue
  • Lijing Tan
  • Ben Niu
چکیده

Inertia weight is one of the most important adjustable parameters of particle swarm optimization (PSO). The proper selection of inertia weight can prove a right balance between global search and local search. In this paper, a novel PSOs with non-linear inertia weight based on the arc tangent function is provided. The performance of the proposed PSO models are compared with standard PSO with linearly-decrease inertia weight using four benchmark functions. The experimental results demonstrate that our proposed PSO models are better than standard PSO in terms of convergence rate and solution precision. The proposed novel PSOs are also used to solve an improved portfolio optimization model with complex constraints and the primary results demonstrate their effectiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Bee Colony Algorithm Hybridized with Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Selection Problem

Portfolio selection (optimization) problem is a very important and widely researched problem in the areas of finance and economy. Literature review shows that many methods and heuristics were applied to this hard optimization problem, however, there are only few implementations of swarm intelligence metaheuristics. This paper presents artificial bee colony (ABC) algorithm applied to the cardina...

متن کامل

Comparison of particle swarm optimization and tabu search algorithms for portfolio selection problem

Using Metaheuristics models and Evolutionary Algorithms for solving portfolio problem has been considered in recent years.In this study, by using particles swarm optimization and tabu search algorithms we  optimized two-sided risk measures . A standard exact penalty function transforms the considered portfolio selection problem into an equivalent unconstrained minimization problem. And in final...

متن کامل

Handling Constraints with Agent-Based Optimization Algorithms and Application to Aerodynamic Design. Optimization and Engineering. DOI: 10.1007/s11081-016-9343-0

A generic constraint handling framework for use with any swarm-based optimization algorithm is presented. For swarm optimizers to solve constrained optimization problems effectively modifications have to be made to the optimizers to handle the constraints, however, these constraint handling frameworks are often not universally applicable to all swarm algorithms. A constraint handling framework ...

متن کامل

A Hybrid Particle Swarm Optimization Approach To Mixed Integer Quadratic Programming For Portfolio Selection Problems

Portfolio selection problems in investments are most studied in modern finance because of their computational intractability. The basic topic of modern portfolio theory is the way in which investors can construct a diversified portfolio of financial securities so as to achieve improved tradeoffs between risk and return. In this paper, a heuristic algorithm using particle swarm optimization (PSO...

متن کامل

Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010